Twisted configurations over quantum Euclidean spheres
نویسندگان
چکیده
منابع مشابه
Twisted Configurations over Quantum Euclidean Spheres
We show that the relations which define the algebras of the quantum Euclidean planes Rq can be expressed in terms of projections provided that the unique central element, the radial distance from the origin, is fixed. The resulting reduced algebras without center are the quantum Euclidean spheres SN−1 q . The projections e = e 2 = e are elements in Mat 2n(S N−1 q ), with N = 2n+1 or N = 2n, and...
متن کاملTwisted Dirac Operators over Quantum Spheres
We construct new families of spectral triples over quantum spheres, with a particular attention focused on the standard Podleś quantum sphere and twisted Dirac operators.
متن کاملFredholm Modules for Quantum Euclidean Spheres
The quantum Euclidean spheres, S q , are (noncommutative) homogeneous spaces of quantum orthogonal groups, SOq(N). The ∗-algebra A(S q ) of polynomial functions on each of these is given by generators and relations which can be expressed in terms of a self-adjoint, unipotent matrix. We explicitly construct complete sets of generators for the K-theory (by nontrivial self-adjoint idempotents and ...
متن کاملTwisted cyclic homology of all Podles̀ quantum spheres
We calculate the twisted Hochschild and cyclic homology (in the sense of Kustermans, Murphy and Tuset) of all Podles̀ quantum spheres relative to an arbitary automorphism. Our calculations are based on a free resolution due to Masuda, Nakagami and Watanabe.
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2003
ISSN: 0393-0440
DOI: 10.1016/s0393-0440(02)00132-8